Scheduling of Berthing Resources at a Marine Container Terminal via the use of Genetic Algorithms: Current and Future Research

نویسندگان

  • Maria Boile
  • Mihalis Golias
  • Sotirios Theofanis
چکیده

The tremendous increase of containerized trade over the last several years, the resulting congestion in container terminals worldwide, the remarkable increase in containership size and capacity, the increased operating cost of container vessels and the adoption by liner shipping companies of yield management techniques strain the relationships between ocean carriers and container terminal operators. Shipping lines want their vessels to be served upon arrival or according to a favorable priority pattern and complete their loading/unloading operations within a prearranged time window, irrespective of the problems and shortage of resources terminal operators are facing. Therefore, allocating scarce seaside resources is considered to be a problem deserving both practical and theoretical attention. Scientific research has focused on scheduling problems dealing primarily with two of the most important seaside resources: berth space and quay cranes. Comprehensive reviews of applications and optimization models in the field of marine container terminal operations are given by Meersmans and Dekker (2001), Vis and de Koster (2003), Steenken et al. (2004), Vacca et al. (2007), and Stahlbock and Voß (2008). Scheduling of berth space, also called the berth scheduling problem (BSP), can be simply described as the problem of allocating space to vessels at the quay in a container terminal. The quay crane scheduling problem (QSP) can be described as the problem of allocating quay cranes to each vessel and vessel section. Vessels arrive at a container terminal over time and the terminal operator assigns them to berths to be served. To unload/load the containers from/onboard the vessel a number of quay cranes are assigned to each vessel. Ocean carriers, and therefore vessels, compete over the available berths and quay cranes, and different factors affect the berthing position, the start time of service, and the number of quay cranes assigned to each vessel. Several formulations have been presented for the BSP, the QSP, and recently for the combination of the BSP and QSP, the berth and quay crane scheduling problem (BQSP). Most of the model formulations have been single objective and it was not until recently that researchers recognized the multi-objective and multi-level character of these problems and introduced formulations that capture berth scheduling policies using the latter two formulations. The formulations that have appeared in the literature, in most cases, lead to NP-hard problems that require a heuristic or meta-heuristic algorithm to be developed in order to obtain a solution within computationally acceptable O pe n A cc es s D at ab as e w w w .in te ch w eb .o rg

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Mathematical Model and Grouping Imperialist Competitive Algorithm for Integrated Quay Crane and Yard Truck Scheduling Problem with Non-crossing Constraint

In this research, an integrated approach is presented to simultaneously solve quay crane scheduling and yard truck scheduling problems. A mathematical model was proposed considering the main real-world assumptions such as quay crane non-crossing, precedence constraints and variable berthing times for vessels with the aim of minimizing vessels completion time. Based on the numerical results, thi...

متن کامل

Yard crane scheduling in port container terminals using genetic algorithm

Yard crane is an important resource in container terminals. Efficient utilization of the yard crane significantly improves the productivity and the profitability of the container terminal. This paper presents a mixed integer programming model for the yard crane scheduling problem with non- interference constraint that is NPHARD in nature. In other words, one of the most important constraints in...

متن کامل

Optimizing the Static and Dynamic Scheduling problem of Automated Guided Vehicles in Container Terminals

The Minimum Cost Flow (MCF) problem is a well-known problem in the area of network optimisation. To tackle this problem, Network Simplex Algorithm (NSA) is the fastest solution method. NSA has three extensions, namely Network Simplex plus Algorithm (NSA+), Dynamic Network Simplex Algorithm (DNSA) and Dynamic Network Simplex plus Algorithm (DNSA+). The objectives of the research reported in this...

متن کامل

Genetic Algorithm for Dynamic Berth Allocation Problem with Discrete Layout

Genetic Algorithm which is based on the Darwinian principle of natural selection has been successfully applied to Berth allocation problem (BAP), which can decide the ships’ berthing position and berthing time at a container terminal. Considering the service priority, handing time deciding variables, safety clearance, as well as the berths’ physical conditions, a dynamic berth allocation with d...

متن کامل

An Efficient Extension of Network Simplex Algorithm

In this paper, an efficient extension of network simplex algorithm is presented. In static scheduling problem, where there is no change in situation, the challenge is that the large problems can be solved in a short time. In this paper, the Static Scheduling problem of Automated Guided Vehicles in container terminal is solved by Network Simplex Algorithm (NSA) and NSA+, which extended the stand...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012